login
A327729
a(n) = Sum_{p} M(n-k; p_1-1, ..., p_k-1) * Product_{j=1..k} a(p_j), where p = (p_1, ..., p_k) ranges over all partitions of n into smaller parts (k is a partition length and M is a multinomial).
3
1, 1, 2, 6, 18, 90, 414, 2892, 18342, 155124, 1265130, 13413240, 129656286, 1564538796, 18285385518, 255345207156, 3378398348214, 52931303772912, 797460543143154, 13926097774972152, 234050020177159926, 4466082284967035124, 83159771376289666806
OFFSET
1,3
COMMENTS
The formula is a generalization of the formula given in A327643.
MAPLE
with(combinat):
a:= proc(n) option remember; `if`(n<2, 1, add(mul(a(i), i=p)
*multinomial(n-nops(p), map(x-> x-1, p)[]),
p=select(x-> nops(x)>1, partition(n))))
end:
seq(a(n), n=1..24);
# second Maple program:
b:= proc(n, p, i) option remember; `if`(n=0, p!, `if`(i<1, 0,
b(n, p, i-1) +a(i)*b(n-i, p-1, min(n-i, i))/(i-1)!))
end:
a:= n-> `if`(n<2, 1, b(n$2, n-1)):
seq(a(n), n=1..24);
MATHEMATICA
b[n_, p_, i_] := b[n, p, i] = If[n == 0, p!, If[i < 1, 0, b[n, p, i - 1] + a[i] b[n - i, p - 1, Min[n - i, i]]/(i - 1)!]];
a[n_] := If[n < 2, 1, b[n, n, n - 1]];
Array[a, 24] (* Jean-François Alcover, May 03 2020, after 2nd Maple program *)
CROSSREFS
Sequence in context: A263915 A360516 A144557 * A273001 A118455 A165774
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 23 2019
STATUS
approved