login
A327700
Primes p such that p + q*(q-p) and q + p*(q-p) are prime, where q is the next prime after p.
1
2, 3, 5, 23, 59, 61, 83, 151, 233, 263, 269, 293, 373, 401, 433, 503, 541, 619, 701, 971, 1103, 1433, 1493, 1601, 1621, 1861, 1949, 2099, 2179, 2371, 2441, 2543, 2741, 2851, 2903, 2999, 3083, 3181, 3313, 3413, 3559, 3631, 4073, 4093, 4549, 4591, 4643, 5039, 5081, 5471, 5711, 5749
OFFSET
1,1
LINKS
MAPLE
R:= NULL: count:= 0:
q:= 2:
do
p:= q; q:= nextprime(p);
if isprime(p+(q-p)*q) and isprime(q+(q-p)*p) then
count:= count+1;
R:= R, p;
if count = 100 then break fi
fi
od:
R;
MATHEMATICA
Do[a=Prime[k]+Prime[k+1]*(Prime[k+1]-Prime[k]); b=Prime[k+1]+Prime[k]*(Prime[k+1]-Prime[k]); If[PrimeQ[a]&&PrimeQ[b], Print[Prime[k]]], {k, 1, 757}] (* Metin Sariyar, Sep 23 2019 *)
chpQ[{a_, b_}]:=AllTrue[{a+b(b-a), b+a(b-a)}, PrimeQ]; Select[Partition[ Prime[ Range[800]], 2, 1], chpQ][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2021 *)
CROSSREFS
Includes A174920.
Sequence in context: A080016 A171432 A214703 * A182976 A042363 A208220
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Sep 22 2019
STATUS
approved