login
A327691
Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A003106.
5
1, 0, 1, 1, 2, 1, 5, 3, 8, 7, 13, 11, 26, 20, 40, 39, 66, 61, 111, 102, 171, 174, 266, 269, 427, 423, 638, 675, 969, 1016, 1477, 1544, 2177, 2350, 3209, 3466, 4754, 5112, 6867, 7546, 9931, 10899, 14343, 15729, 20406, 22653, 28962, 32168, 41069, 45561, 57551, 64382, 80491, 90030, 112286
OFFSET
0,5
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
FORMULA
G.f.: Product_{i>=1} Product_{j>=1} 1 / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/(QPochhammer[x^(5*j - 3)] * QPochhammer[x^(5*j - 2)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2019
STATUS
approved