%I #23 May 04 2020 05:10:40
%S 1,-1,0,0,-1,0,1,0,0,0,0,-2,2,1,0,1,-1,-1,-1,-1,2,1,0,1,-1,-3,1,2,-1,
%T 0,4,-6,-2,3,-1,1,4,-1,-2,-1,2,-4,4,0,-3,1,-3,4,2,-1,3,-1,-3,-1,2,-3,
%U 1,2,-6,-3,12,-7,3,11,-7,-4,7,-10,-1,7,2,-16,11,2,-10,14,-4,3,-3
%N Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A007325.
%H Vaclav Kotesovec, <a href="/A327688/b327688.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Seiichi Manyama)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction.</a>
%F G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(5*j-1))) * (1-x^(i*(5*j-4))) / ((1-x^(i*(5*j-2))) * (1-x^(i*(5*j-3)))).
%F G.f.: Product_{k>=1} (1-x^k)^A035187(k).
%o (PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(5, d))))
%Y Cf. A007325, A035187, A307757, A327686, A327690, A327691, A327716.
%K sign,look
%O 0,12
%A _Seiichi Manyama_, Sep 22 2019