%I #30 Jul 08 2023 19:21:41
%S 1,4,12,18,38,62,78,90,114,174,184,208,236,284,324,348,384,408,426,
%T 486,502,532,580,604,704,788,860,908,922,1042,1072,1120,1160,1196,
%U 1276,1300,1376,1394,1450,1510,1550,1598,1686,1716,1836,1884,1916,1940,2052,2352,2424,2508,2616,2688,2708
%N Partial sums of Pisano periods (A001175).
%H Robert Bilinski, <a href="/A327687/b327687.txt">Table of n, a(n) for n = 1..10000</a>
%H Joseph Louis de Lagrange, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k2299428/f145.image">Additions aux éléments d'algèbre d'Euler. Analyse indéterminée</a>, (1774), pp. 143ff.
%H J. D. Fulton and W. L. Morris, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1621.pdf">On arithmetical functions related to the Fibonacci numbers</a>, Acta Arithmetica 16 (1969), 105-110.
%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=Nu-lW-Ifyec">Fibonacci Mystery</a>, Numberphile video, 2013.
%t Module[{nn=1000,fibs},fibs=Fibonacci[Range[nn]];Accumulate[Table[Length[ FindTransientRepeat[ Mod[fibs,n],2][[2]]],{n,70}]]] (* _Harvey P. Dale_, Jul 08 2023 *)
%Y Cf. A001175.
%K nonn
%O 1,2
%A _Robert Bilinski_, Sep 22 2019