OFFSET
1,1
COMMENTS
From M. F. Hasler, Nov 16 2023: (Start)
Record gaps in this sequence are : a(2) - a(1) = 1, a(3) - a(2) = 3, a(30) - a(29) = 5, a(112) - a(111) = 39, a(9863) - a(9862) = 1084, a(34096) - a(34095) = 7682, ...
These gaps are closely related to the gaps in the set where 3^0 and 4^0 are (both) also allowed to be in the sum, in which case the first missing numbers are A367090 = (62, 63, 143, 144, 207, ...), see also Melfi's paper. It is obvious that the study of these gaps is crucial for the proof of Erdös conjecture.
The record gap a(9863) - a(9862) = 1084 explains the discontinuity seen in the graph of a(1..10^4). (End)
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..10000, Nov 02 2023
S. A. Burr, P. Erdős, R. L. Graham, and W. Wen-Ching Li, Complete sequences of sets of integer powers, Acta Arithmetica 77(2) (1996), 133-138.
G. Melfi, An additive problem about powers of fixed integers, Rend. Circ. Mat. Palermo 50 (2001), 239-246.
FORMULA
For A(x) the enumerating function, Erdős conjectured that A(x) > c*x.
G. Melfi proved that A(x) > x^0.965 for sufficiently large x.
EXAMPLE
40 is in the sequence because 40 = 27 + 9 + 4.
MATHEMATICA
f[b_, m_] := Select[b Range[0, m/b], Max@ IntegerDigits[#, b] < 2 &]; mx=200; Union@ Select[Total /@ Tuples[{f[3, mx], f[4, mx]}], 0 < # < mx &] (* Giovanni Resta, Sep 19 2019 *)
PROG
(PARI) A327621_upto(N, S=[0])={for(b=3, 4, for(k=1, logint(N, b), my(p=b^k); S=setunion(S, [x+p|x<-S, x+p<=N]))); S[^1]} \\ M. F. Hasler, Nov 02 2023
(Python)
def A327621_upto(N):
"list(x < N | x = sum(3^j, j in J) + sum(4^k, k in K); J, K subset N*)."
S = {0} # empty sum
for b in (3, 4):
p = b
while p < N: S |= {k+p for k in S if k+p < N} ; p *= b
return sorted(S) # includes a(0) = 0, so a(1, 2, 3, ...) = 3, 4, 9, ...
# M. F. Hasler, Nov 09 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Giuseppe Melfi, Sep 19 2019
EXTENSIONS
More terms from Giovanni Resta, Sep 19 2019
STATUS
approved