Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Dec 06 2020 15:56:19
%S 1,2,3,5,7,13,23,45,89,137,253,505,897,1793,3393,6353,9721,19441,
%T 35665,71329,129953,247233,477665,955329,1700417,2657281,5184001,
%U 10368001,19407361,38814721,68868353,137736705,260693505,505830401,999641601,1882820609,2807196673
%N Number of subsets of {1..n} containing no quotients of pairs of distinct elements.
%H Fausto A. C. Cariboni, <a href="/A327591/b327591.txt">Table of n, a(n) for n = 0..167</a>, (terms up to a(100) from Peter Kagey based on Andrew Howroyd's b-file for A326489)
%F A326489(n) + 1 for n > 0.
%e The a(0) = 1 through a(5) = 13 subsets:
%e {} {} {} {} {} {}
%e {1} {1} {1} {1} {1}
%e {2} {2} {2} {2}
%e {3} {3} {3}
%e {2,3} {4} {4}
%e {2,3} {5}
%e {3,4} {2,3}
%e {2,5}
%e {3,4}
%e {3,5}
%e {4,5}
%e {2,3,5}
%e {3,4,5}
%Y Maximal subsets without quotients are A326492.
%Y Subsets with quotients are A326023.
%Y Subsets without differences or quotients are A326490.
%Y Subsets without products are A326489.
%Y Cf. A007865, A051026, A325860, A325994, A326079, A326117, A326491, A326496.
%K nonn
%O 0,2
%A _Peter Kagey_, Sep 17 2019