OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.
LINKS
Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with infinitary divisors of an integer, International Journal of Mathematics and Mathematical Sciences, Vol. 16, No. 2 (1993), pp. 373-383.
FORMULA
Equals Limit_{n->oo} A327573(n)/(2 * n * log(n)). [Corrected by Amiram Eldar, May 07 2021]
Equals (1/2) * Product_{P} (1 - 1/(P+1)^2), where P are numbers of the form p^(2^k) where p is prime and k >= 0 (A050376).
EXAMPLE
0.366625276945381909556532720687001563033612155971009...
MATHEMATICA
m = 1000; em = 10; f[x_] := Sum[Log[1 - 1/(1 + 1/x^(2^e))^2], {e, 0, em}]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; $MaxExtraPrecision = 1500; RealDigits[(1/2)*Exp[f[1/2] + f[1/3]]* Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - (1/2)^k - (1/3)^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 17 2019
STATUS
approved