login
A327553
Number of partitions in all twice partitions of n where both partitions are strict.
4
0, 1, 1, 4, 6, 11, 20, 33, 57, 100, 165, 254, 417, 649, 1039, 1648, 2540, 3836, 6020, 9035, 13645, 20752, 31054, 45993, 68668, 101511, 149525, 220132, 321614, 468031, 684124, 989703, 1427054, 2064859, 2964987, 4254028, 6090453, 8686574, 12366583, 17598885
OFFSET
0,4
LINKS
EXAMPLE
a(3) = 4 = 1+1+2 counting the partitions in 3, 21, 2|1.
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, [1, 0], b(n, i-1)+(p-> p+[0, p[1]])(
g(i)*b(n-i, min(n-i, i-1)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..42);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
b[n_, i_] := b[n, i] = If[i(i+1)/2 < n, {0, 0}, If[n==0, {1, 0}, b[n, i-1] + Function[p, p + {0, p[[1]]}][g[i] b[n-i, Min[n-i, i-1]]]]];
a[n_] := b[n, n][[2]];
a /@ Range[0, 42] (* Jean-François Alcover, Dec 18 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 16 2019
STATUS
approved