OFFSET
1,2
COMMENTS
Conjecture: For k > 1, k^m == 1-k (mod m) has an infinite number of positive solutions.
Integer m not divisible by 3 is a term if and only if 3m is a term of A240941. - Max Alekseyev, Feb 07 2024
Also terms 930486448009391617725 and 21036656390681764555645540794214294457925. - Giovanni Resta, Oct 04 2019
Other terms 71245661271703622047, 7093208961478946798805, 7807963392818324067361574236385. - Max Alekseyev, Feb 07 2024
PROG
(PARI) isok(n) = Mod(8, n)^n==-7; \\ Michel Marcus, Oct 05 2019
(Magma) [m: m in [1..7] | (8^m + 7) mod m eq 0] cat [m: m in [8..10^8] | Modexp(8, m, m) + 7 eq m]; // Jon E. Schoenfield, Oct 05 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Juri-Stepan Gerasimov, Oct 04 2019
EXTENSIONS
a(10)-a(13) from Giovanni Resta, Oct 04 2019
a(14)-a(16) from Max Alekseyev, Feb 07 2024
STATUS
approved