login
Numbers k such that there are exactly 5 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 5.
7

%I #9 Sep 10 2019 03:04:10

%S 40,176,208,480,736,928,1248,1440,1632,1824,2128,2400,2464,2720,3008,

%T 3360,3520,3776,3904,4144,4240,4320,4704,5280,5664,6432,7040,7200,

%U 7360,7488,7992,8064,8544,9504,9792,10336,10400,10944,12160,12992,13158,13392,15744

%N Numbers k such that there are exactly 5 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 5.

%H Vaclav Kotesovec, <a href="/A327430/b327430.txt">Table of n, a(n) for n = 1..181</a>

%e C(40,20) is divisible by 5 binomial coefficients: C(40,0), C(40,2), C(40,20), C(40,38) and C(40,40).

%Y Cf. A080383, A080384, A080385, A080386, A327431, A080387.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Sep 10 2019