login
A327409
Smallest integer > 0 so that its remainders modulo the first n primes are at least half their respective moduli.
2
1, 5, 23, 53, 53, 293, 503, 713, 1439, 1439, 16673, 16673, 16673, 16673, 16673, 16673, 16673, 298583, 728153, 728153, 728153, 19420253, 19420253, 66663659, 207178199, 384974819, 384974819, 384974819, 546086693, 546086693, 8504041103, 22060162703, 60826761629, 60826761629
OFFSET
1,2
LINKS
EXAMPLE
a(6) = 293.
293 mod 2 = 1 >= 2/2
293 mod 3 = 2 >= 3/2
293 mod 5 = 3 >= 5/2
293 mod 7 = 6 >= 7/2
293 mod 11 = 7 >= 11/2
293 mod 13 = 7 >= 13/2
293 is the smallest integer > 0 satisfying these inequalities for the first 6 primes.
PROG
(PARI) isok(k, vp) = {for (i=1, #vp, if ((k % vp[i]) < vp[i]/2, return (0)); ); return (1); }
a(n) = {my(k=1, vp = primes(n)); while (!isok(k, vp), k++); k; } \\ Michel Marcus, Sep 08 2019
CROSSREFS
Companion sequence of A327408.
Sequence in context: A127200 A147113 A135771 * A140811 A247657 A241099
KEYWORD
nonn
AUTHOR
Bert Dobbelaere, Sep 07 2019
STATUS
approved