|
|
A327408
|
|
Smallest integer > 0 so that its remainders modulo the first n primes are less than half their respective moduli.
|
|
2
|
|
|
2, 4, 6, 10, 16, 16, 70, 136, 210, 210, 442, 786, 786, 786, 6450, 53110, 53110, 247690, 303810, 303810, 813450, 3443146, 5889382, 9327220, 10068256, 63916062, 63916062, 63916062, 285847290, 285847290, 285847290, 285847290, 370793956, 370793956, 370793956, 370793956
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Bert Dobbelaere, Table of n, a(n) for n = 1..53
|
|
EXAMPLE
|
a(6) = 16.
16 mod 2 = 0 < 2/2
16 mod 3 = 1 < 3/2
16 mod 5 = 1 < 5/2
16 mod 7 = 2 < 7/2
16 mod 11 = 5 < 11/2
16 mod 13 = 3 < 13/2
16 is the smallest integer > 0 satisfying these inequalities for the first 6 primes.
|
|
PROG
|
(PARI) isok(k, vp) = {for (i=1, #vp, if ((k % vp[i]) >= vp[i]/2, return (0)); ); return (1); }
a(n) = {my(k=1, vp = primes(n)); while (!isok(k, vp), k++); k; } \\ Michel Marcus, Sep 08 2019
|
|
CROSSREFS
|
Companion sequence of A327409.
Cf. A002110, A306582, A306612.
Sequence in context: A113117 A179531 A134682 * A083814 A073805 A352587
Adjacent sequences: A327405 A327406 A327407 * A327409 A327410 A327411
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Bert Dobbelaere, Sep 07 2019
|
|
STATUS
|
approved
|
|
|
|