login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of set-systems with n vertices and vertex-connectivity 2.
2

%I #4 Sep 09 2019 12:05:21

%S 0,0,0,72,4752

%N Number of set-systems with n vertices and vertex-connectivity 2.

%C A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

%t csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];

%t Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],vertConnSys[Range[n],#]==2&]],{n,0,3}]

%Y BII-numbers for vertex-connectivity 2 are A327374.

%Y BII-numbers for cut-connectivity 2 are A327082.

%Y BII-numbers for spanning edge-connectivity 2 are A327108.

%Y BII-numbers for non-spanning edge-connectivity 2 are A327097.

%Y Labeled graphs with vertex-connectivity 2 are A327198.

%Y The vertex-connectivity of the set-system with BII-number n is A327051(n).

%Y The enumeration of labeled graphs by vertex-connectivity is A327334.

%Y Cf. A013922, A259862, A322389, A322390, A323818, A327336.

%K nonn,more

%O 0,4

%A _Gus Wiseman_, Sep 05 2019