%I #15 Sep 30 2019 10:43:19
%S 5,6,7,12,13,14,19,20,21,26,27,28,33,34,35,41,42,48,49,55,56,62,63,69,
%T 70,76,77,83,84,90,91,97,98,104,105,111,112,113,118,119,120,125,126,
%U 127,132,133,134,139,140,141,146,147,148,154,155,161,162,168,169,175
%N Positions of 2's in {A327298(n) : n > 0}.
%C The positive integers are partitioned by A327299, A327300, and A327301.
%C Although a(n)/n->3, the sequence a(n)-3n appears to be unbounded.
%C Positive integers k such that A327298(k) = 2. - _Jianing Song_, Sep 30 2019
%H Clark Kimberling and Jianing Song, <a href="/A327301/b327301.txt">Table of n, a(n) for n = 1..10000</a>
%t r = Pi; z = 300;
%t t = Table[Floor[3 n*r] - 3 Floor[n*r], {n, 1, z}] (* {A327298(n) : n > 0} *)
%t Flatten[Position[t, 0]] (* A327299 *)
%t Flatten[Position[t, 1]] (* A327300 *)
%t Flatten[Position[t, 2]] (* A327301 *)
%Y Cf. A327298, A327299, A327300.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Sep 06 2019
%E Corrected by _Jianing Song_, Sep 30 2019