%I #11 Aug 31 2019 03:09:48
%S 3,3,4,5,6,7,8,5,10,7,12,9,14,10,16,13,13,7,20,16,22,17,4,10,26,21,11,
%T 25,5,13,13,9,34,29,15,16,31,16,11,37,37,19,19,13,19,13,6,21,50,11,22,
%U 7,7,16,25,17,25,17,13,28,62,55,28,19,57,29,7,15,7,16
%N For any n >= 0, let u and v be such that 2 <= u < v and the digits of n in bases u and v are the same up to a permutation and v is minimized; a(n) = v.
%H Rémy Sigrist, <a href="/A327226/b327226.txt">Table of n, a(n) for n = 0..10000</a>
%F A327225(n) < a(n) <= 1 + max(2, n+1).
%e For n = 11:
%e - the representations of 11 in bases b = 2..9 are:
%e b 11 in base b
%e - ------------
%e 2 "1011"
%e 3 "102"
%e 4 "23"
%e 5 "21"
%e 6 "15"
%e 7 "14"
%e 8 "13"
%e 9 "12"
%e - the representation in base 9 is the least that shows the same digits, up to order, to some former base, namely the base 5,
%e - hence a(11) = 9.
%o (PARI) a(n) = { my (s=[]); for (v=2, oo, my (d=vecsort(digits(n,v))); if (setsearch(s,d), return (v), s=setunion(s,[d]))) }
%Y See A327225 for the corresponding u's.
%K nonn,base
%O 0,1
%A _Rémy Sigrist_, Aug 27 2019