OFFSET
0,6
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order k*2^(k-1) = A001787(k).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Partition (number theory)
FORMULA
Sum_{k=1..n} k * T(n,k) = A327118(n).
EXAMPLE
T(3,2) = 4: 2ab1a, 2ab1b, 1a1a1b, 1a1b1b.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 4, 5;
0, 1, 7, 18, 15;
0, 1, 10, 45, 84, 52;
0, 1, 14, 94, 298, 415, 203;
0, 1, 18, 174, 844, 1995, 2178, 877;
0, 1, 23, 300, 2081, 7440, 13638, 12131, 4140;
0, 1, 28, 486, 4652, 23670, 64898, 95823, 71536, 21147;
0, 1, 34, 756, 9682, 67390, 259599, 566447, 694676, 445356, 115975;
...
MAPLE
C:= binomial:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k)*C(C(k, i)+j-1, j), j=0..n/i)))
end:
T:= (n, k)-> add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i j, Min[n - i j, i - 1], k] Binomial[Binomial[k, i] + j - 1, j], {j, 0, n/i}]]];
T[n_, k_] := Sum[b[n, n, i] (-1)^(k - i) Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 04 2019, after Alois P. Heinz *)
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 13 2019
STATUS
approved