%I #8 Jun 09 2021 02:31:46
%S 1,1,2,1,1,9,36,74,75,30,1,32,693,7720,44150,138312,247380,252000,
%T 136080,30240,1,154,25041,1500860,35815145,423545178,2868102286,
%U 12141259200,33841521000,63823914000,82023091920,70832361600,39351312000,12713500800,1816214400
%N Triangle read by rows: T(n,k) is the number of unoriented colorings of the edges of a regular n-dimensional simplex using exactly k colors. Row n has (n+1)*n/2 columns.
%C An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.
%C T(n,k) is also the number of unoriented colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using exactly k colors. Thus, T(2,k) is also the number of unoriented colorings of the vertices (0-dimensional simplices) of an equilateral triangle.
%H Robert A. Russell, <a href="/A327088/b327088.txt">Table of n, a(n) for n = 1..220</a> First 10 rows.
%H E. M. Palmer and R. W. Robinson, <a href="https://projecteuclid.org/euclid.acta/1485889789">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143.
%F The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.
%F A327084(n,k) = Sum_{j=1..(n+1)*n/2} T(n,j) * binomial(k,j).
%F A(n,k) = A327087(n,k) - A327089(n,k) = (A327087(n,k) + A327090(n,k)) / 2 = A327089(n,k) + A327090(n,k).
%e Triangle begins with T(1,1):
%e 1
%e 1 2 1
%e 1 9 36 74 75 30
%e 1 32 693 7720 44150 138312 247380 252000 136080 30240
%e For T(2,1)=1, all edges of the triangle are the same color. For T(2,2)=2, the edges are AAB and ABB. For T(2,3)=2, the chiral pair is ABC-ACB.
%t CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)
%t CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]
%t compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)
%t CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]
%t pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
%t row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
%t array[n_, k_] := row[n] /. j -> k
%t Table[LinearSolve[Table[Binomial[i,j], {i,1,(n+1)n/2}, {j,1,(n+1)n/2}], Table[array[n,k], {k,1,(n+1)n/2}]], {n,1,6}] // Flatten
%Y Cf. A327087 (oriented), A327089 (chiral), A327090 (achiral), A327084 (exactly k colors), A007318(n,k-1) (vertices).
%K nonn,tabf
%O 1,3
%A _Robert A. Russell_, Aug 19 2019