login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327082 BII-numbers of set-systems with cut-connectivity 2. 12
4, 5, 6, 7, 16, 17, 24, 25, 32, 34, 40, 42, 256, 257, 384, 385, 512, 514, 640, 642, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

We define the cut-connectivity (A326786, A327237), of a set-system to be the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a disconnected or empty set-system, with the exception that a set-system with one vertex and no edges has cut-connectivity 1. Except for cointersecting set-systems (A326853, A327039), this is the same as vertex-connectivity (A327334, A327051).

LINKS

Table of n, a(n) for n=1..55.

EXAMPLE

The sequence of all set-systems with cut-connectivity 2 together with their BII-numbers begins:

    4: {{1,2}}

    5: {{1},{1,2}}

    6: {{2},{1,2}}

    7: {{1},{2},{1,2}}

   16: {{1,3}}

   17: {{1},{1,3}}

   24: {{3},{1,3}}

   25: {{1},{3},{1,3}}

   32: {{2,3}}

   34: {{2},{2,3}}

   40: {{3},{2,3}}

   42: {{2},{3},{2,3}}

  256: {{1,4}}

  257: {{1},{1,4}}

  384: {{4},{1,4}}

  385: {{1},{4},{1,4}}

  512: {{2,4}}

  514: {{2},{2,4}}

  640: {{4},{2,4}}

  642: {{2},{4},{2,4}}

The first term involving an edge of size 3 is 832: {{1,2,3},{1,4},{2,4}}.

MATHEMATICA

bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];

csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];

vertConnSys[sys_]:=If[Length[csm[sys]]!=1, 0, Min@@Length/@Select[Subsets[Union@@sys], Function[del, Length[csm[DeleteCases[DeleteCases[sys, Alternatives@@del, {2}], {}]]]!=1]]];

Select[Range[0, 100], vertConnSys[bpe/@bpe[#]]==2&]

CROSSREFS

Positions of 2's in A326786.

BII-numbers for non-spanning edge-connectivity 2 are A327097.

BII-numbers for spanning edge-connectivity 2 are A327108.

The cut-connectivity 1 version is A327098.

The cut-connectivity > 1 version is A327101.

Covering 2-cut-connected set-systems are counted by A327112.

Covering set-systems with cut-connectivity 2 are counted by A327113.

Cf. A000120, A002218, A013922, A048793, A259862, A322387, A322388, A326031, A327041, A327114.

Sequence in context: A046300 A053738 A327101 * A154787 A233035 A250036

Adjacent sequences:  A327079 A327080 A327081 * A327083 A327084 A327085

KEYWORD

nonn

AUTHOR

Gus Wiseman, Aug 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 09:00 EDT 2020. Contains 333268 sequences. (Running on oeis4.)