OFFSET
1,1
COMMENTS
Numbers m such that the quadratic mean (the root mean square) of the divisors of m is an integer but the arithmetic mean of the divisors of m is not an integer.
Numbers m such that Q(m) = sqrt(A001157(m) / A000005(m)) is an integer but A(m) = A000203(m) / A000005(m) is not an integer.
Corresponding values of Q(m): 247511537, 368213825, 763370125, 957355945, 1237557685, 1237557685, 957355945, 1841069125, ...
Corresponding values of A(m): 418652080/9, 433603940/9, 324455362/3, 1166788784/9, 575646610/3, 1674608320/9, 315348320/3, ...
Up to 10^13 there is only one odd term, a(29) = 3486482785825. Note that among the 7430 RMS numbers below 10^13 only 83 are even. - Giovanni Resta, Oct 29 2019
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..39 (terms < 10^13)
PROG
(Magma) [m: m in [1..10^6] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(Sqrt(&+[d^2: d in Divisors(m)] / NumberOfDivisors(m)))]
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 18 2019
EXTENSIONS
a(13)-a(20) from Giovanni Resta, Oct 29 2019
STATUS
approved