This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A327029 T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n. 8
 1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS EXAMPLE Triangle starts: [0] [1] [1] [0, 1] [2] [0, 2, 1] [3] [0, 3, 1, 1] [4] [0, 4, 3, 1, 1] [5] [0, 5, 2, 2, 1, 1] [6] [0, 6, 6, 4, 2, 1, 1] [7] [0, 7, 3, 4, 3, 2, 1, 1] [8] [0, 8, 8, 6, 6, 3, 2, 1, 1] [9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1] PROG (SageMath) def DivisorTriangle(f, T, Len, w = None):     D = [[1]]     for n in (1..Len-1):         r = lambda k: [f(d)*T(n//d, k) for d in divisors(n)]         L = [sum(r(k)) for k in (0..n)]         if w != None: L = map(lambda v: v * w(n), L)         D.append(L)     return D DivisorTriangle(euler_phi, A008284, 10) CROSSREFS Cf. A008284, A000010, A078392 (row sums), A282750. Sequence in context: A285037 A264422 A176808 * A167192 A262114 A320780 Adjacent sequences:  A327026 A327027 A327028 * A327030 A327031 A327032 KEYWORD nonn,tabl AUTHOR Peter Luschny, Aug 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 05:08 EDT 2019. Contains 327995 sequences. (Running on oeis4.)