OFFSET
0,4
COMMENTS
The Hindenburg order refers to the partition generating algorithm of C. F. Hindenburg (1779). [Knuth 7.2.1.4H]
FORMULA
Row of lengths are in A000041.
EXAMPLE
The irregular triangle starts:
[0] [1]
[1] [1]
[2] [1, 35]
[3] [1, 495, 5775]
[4] [1, 1820, 6435, 450450, 2627625]
[5] [1, 4845, 125970, 4408950, 31177575, 727476750, 2546168625]
[6] [1, 10626, 735471, 25741485, 1352078, 1338557220, 15616500900, 1577585295, 165646455975, 1932541986375, 4509264634875]
PROG
(SageMath)
def A327004row(n):
shapes = ([4*x for x in p] for p in Partitions(n))
return [SetPartitions(sum(s), s).cardinality() for s in shapes]
for n in (0..6): print((A327004row(n)))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Aug 14 2019
STATUS
approved