login
A327000
A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.
4
1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
OFFSET
0,3
FORMULA
The columns for k = 0, 1, 2 are suppressed as they are identical 0.
A(0, k) = A000108(k) - A011782(k).
A(1, k) = A000142(k) - A000110(k).
A(2, k) = A002105(k) - A005046(k-1) for k >= 1.
A(3, k) = A018893(k) - A291973(k).
A(4, k) = A326999(k) - A291975(k).
EXAMPLE
Array starts:
n\k [ 3 4 5 6 7 ]
[0] 1, 6, 26, 100, 365, ... [A125107]
[1] 1, 9, 68, 517, 4163, ... [A048742]
[2] 3, 117, 4500, 199155, 10499643, ... [A326995]
[3] 10, 2574, 748616, 282846568, 141482705378, ... [A327002]
[4] 35, 70005, 192426260, 799156187475, 4961959681629275, ...
[5] 126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
MAPLE
ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 12 2019
STATUS
approved