login
A326978
Number of integer partitions of n such that the dual of the multiset partition obtained by factoring each part into prime numbers is a weak antichain.
10
1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 52, 68, 91, 116, 149, 191, 249, 311, 399, 498, 622, 773, 971, 1193, 1478, 1811, 2222, 2709, 3311, 4021, 4882, 5894, 7110, 8554, 10273, 12312, 14734, 17578, 20941, 24905, 29570, 35056, 41475, 48983, 57752, 68025, 79988
OFFSET
0,3
COMMENTS
The dual of a multiset partition has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}.
A weak antichain is a multiset of multisets, none of which is a proper submultiset of any other.
EXAMPLE
The a(0) = 1 through a(7) = 15 partitions:
() (1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
submultQ[cap_, fat_]:=And@@Function[i, Count[fat, i]>=Count[cap, i]]/@Union[List@@cap];
Table[Length[Select[IntegerPartitions[n], stableQ[dual[primeMS/@#], submultQ]&]], {n, 0, 30}]
CROSSREFS
Set-systems whose dual is a weak antichain are A326968.
Factorizations whose dual is a weak antichain are A326975.
The version where the dual is a strict antichain is A326977.
Sequence in context: A008630 A347573 A238865 * A035969 A355027 A332745
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 13 2019
STATUS
approved