OFFSET
0,3
COMMENTS
The dual of a multiset partition has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. An antichain is a set of multisets, none of which is a submultiset of any other.
EXAMPLE
The a(0) = 1 through a(7) = 14 partitions:
() (1) (2) (3) (4) (5) (33) (7)
(11) (21) (22) (32) (42) (43)
(111) (31) (41) (51) (52)
(211) (221) (222) (322)
(1111) (311) (321) (331)
(2111) (411) (421)
(11111) (2211) (511)
(3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]]
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
stableQ[u_, Q_]:=!Apply[Or, Outer[#1=!=#2&&Q[#1, #2]&, u, u, 1], {0, 1}];
submultQ[cap_, fat_]:=And@@Function[i, Count[fat, i]>=Count[cap, i]]/@Union[List@@cap];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@dual[primeMS/@#]&&stableQ[dual[primeMS/@#], submultQ]&]], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 13 2019
STATUS
approved