The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326938 Dirichlet g.f.: 1 / (zeta(s) * zeta(s-1) * (1 - 2^(-s))). 2
 1, -2, -4, 0, -6, 8, -8, 0, 3, 12, -12, 0, -14, 16, 24, 0, -18, -6, -20, 0, 32, 24, -24, 0, 5, 28, 0, 0, -30, -48, -32, 0, 48, 36, 48, 0, -38, 40, 56, 0, -42, -64, -44, 0, -18, 48, -48, 0, 7, -10, 72, 0, -54, 0, 72, 0, 80, 60, -60, 0, -62, 64, -24, 0, 84, -96, -68, 0, 96, -96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Dirichlet inverse of A002131. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA a(1) = 1; a(n) = -Sum_{d|n, d 2, for odd primes p. - Amiram Eldar, Nov 30 2020 MATHEMATICA a[1] = 1; a[n_] := -Sum[Total[Select[Divisors[n/d], OddQ[(n/d)/#] &]] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 70}] Table[DivisorSum[n,  MoebiusMu[n/#] MoebiusMu[#] # &, OddQ[n/#] &], {n, 1, 70}] f[2, e_] := -2*Boole[e == 1]; f[p_, e_] := Which[e == 1, -(p + 1), e == 2, p, e > 2, 0]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Nov 30 2020 *) PROG (PARI) a(n)={sumdiv(n, d, if(n/d%2, moebius(n/d)*moebius(d)*d))} \\ Andrew Howroyd, Oct 25 2019 CROSSREFS Cf. A002131, A008683, A046692, A327278. Sequence in context: A068451 A131715 A200165 * A229534 A021810 A073800 Adjacent sequences:  A326935 A326936 A326937 * A326939 A326940 A326941 KEYWORD sign,mult AUTHOR Ilya Gutkovskiy, Oct 22 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 05:11 EDT 2021. Contains 343072 sequences. (Running on oeis4.)