login
A326905
BII-numbers of set-systems (without {}) closed under intersection.
2
0, 1, 2, 4, 5, 6, 8, 16, 17, 21, 24, 32, 34, 38, 40, 56, 64, 65, 66, 68, 69, 70, 72, 80, 81, 85, 88, 96, 98, 102, 104, 120, 128, 256, 257, 261, 273, 277, 321, 325, 337, 341, 384, 512, 514, 518, 546, 550, 578, 582, 610, 614, 640, 896, 1024, 1025, 1026, 1028
OFFSET
1,3
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
EXAMPLE
The sequence of all set-systems closed under intersection together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
21: {{1},{1,2},{1,3}}
24: {{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
38: {{2},{1,2},{2,3}}
40: {{3},{2,3}}
56: {{3},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[0, 100], SubsetQ[bpe/@bpe[#], Intersection@@@Tuples[bpe/@bpe[#], 2]]&]
CROSSREFS
The case with union instead of intersection is A326875.
The case closed under union and intersection is A326913.
Set-systems closed under intersection and containing the vertex set are A326903.
Set-systems closed under intersection are A326901, with unlabeled version A326904.
Sequence in context: A176654 A185867 A326910 * A327061 A326913 A326703
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 04 2019
STATUS
approved