OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * (A(x)^(n+1) - 1)^n / (1 - x*A(x)^n)^(n+1).
(2) A(x) = Sum_{n>=0} x^n * (A(x)^(n+1) + 1)^n / (1 + x*A(x)^n)^(n+1).
(3) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (A(x)^(n+1) - A(x)^k)^(n-k).
(4) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (A(x)^(n+1) + A(x)^k)^(n-k) * (-1)^k.
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 64*x^4 + 388*x^5 + 2547*x^6 + 17675*x^7 + 127930*x^8 + 957361*x^9 + 7363756*x^10 + 57974777*x^11 + 465801960*x^12 + ...
satisfies
A(x) = 1/(1 - x*A(x)) + x*(A(x)^2 - 1)/(1 - x*A(x))^2 + x^2*(A(x)^3 - 1)^2/(1 - x*A(x)^2)^3 + x^3*(A(x)^4 - 1)^3/(1 - x*A(x)^3)^4 + x^4*(A(x)^5 - 1)^4/(1 - x*A(x)^4)^5 + x^5*(A(x)^6 - 1)^5/(1 - x*A(x)^5)^6 + ...
also
A(x) = 1/(1 + x*A(x)) + x*(A(x)^2 + 1)/(1 + x*A(x))^2 + x^2*(A(x)^3 + 1)^2/(1 + x*A(x)^2)^3 + x^3*(A(x)^4 + 1)^3/(1 + x*A(x)^3)^4 + x^4*(A(x)^5 + 1)^4/(1 + x*A(x)^4)^5 + x^5*(A(x)^6 + 1)^5/(1 + x*A(x)^5)^6 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^(n+1) + 1)^n/(1 + x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A = concat(A, 0);
A[#A] = polcoeff( sum(n=0, #A+1, x^n*(Ser(A)^(n+1) - 1)^n/(1 - x*Ser(A)^n)^(n+1) ), #A-1));
polcoeff(Ser(A), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2019
STATUS
approved