login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326784 BII-numbers of regular set-systems. 5
0, 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 16, 18, 25, 30, 32, 33, 42, 45, 51, 52, 63, 64, 75, 76, 82, 94, 97, 109, 115, 116, 127, 128, 129, 130, 131, 132, 136, 137, 138, 139, 140, 144, 146, 160, 161, 192, 256, 258, 264, 266, 288, 385, 390, 408, 427, 428, 434, 458 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is regular if all vertices appear the same number of times.

LINKS

Table of n, a(n) for n=1..59.

EXAMPLE

The sequence of all regular set-systems together with their BII-numbers begins:

   0: {}

   1: {{1}}

   2: {{2}}

   3: {{1},{2}}

   4: {{1,2}}

   7: {{1},{2},{1,2}}

   8: {{3}}

   9: {{1},{3}}

  10: {{2},{3}}

  11: {{1},{2},{3}}

  12: {{1,2},{3}}

  16: {{1,3}}

  18: {{2},{1,3}}

  25: {{1},{3},{1,3}}

  30: {{2},{1,2},{3},{1,3}}

  32: {{2,3}}

  33: {{1},{2,3}}

  42: {{2},{3},{2,3}}

  45: {{1},{1,2},{3},{2,3}}

  51: {{1},{2},{1,3},{2,3}}

MATHEMATICA

bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];

Select[Range[0, 100], SameQ@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]&]

CROSSREFS

Cf. A000120, A001511, A005176, A029931, A048793, A070939, A295193, A322554, A326031, A326701, A326783 (uniform), A326785 (uniform regular).

Sequence in context: A047549 A039074 A326966 * A047337 A039049 A037466

Adjacent sequences:  A326781 A326782 A326783 * A326785 A326786 A326787

KEYWORD

nonn

AUTHOR

Gus Wiseman, Jul 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 12 03:53 EDT 2021. Contains 342912 sequences. (Running on oeis4.)