The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326779 E.g.f.: Product_{k>=1} 1/(1 - x^(4*k-1)/(4*k-1)). 4
 1, 0, 0, 2, 0, 0, 80, 720, 0, 13440, 172800, 3628800, 5913600, 98841600, 4420915200, 92559667200, 110702592000, 6012444672000, 234205087334400, 6616915329024000, 13708373852160000, 771938716483584000, 40374130262409216000, 1172555787961958400000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS In the article by Lehmer, Theorem 7, p. 387, case b <> 0 and b <> 1, correct formula is W_n(S_a,b) ~ a^(-1/a) * exp(-gamma/a) * (Gamma((b-1)/a) / (Gamma(b/a) * Gamma(1/a))) * n^(1/a - 1), where gamma is the Euler-Mascheroni constant (A001620) and Gamma() is the Gamma function. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..449 Vaclav Kotesovec, Graph - the asymptotic ratio (50000 terms) D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388 (Theorem 7 needs a correction). FORMULA a(n) ~ exp(-gamma/4) * n! / (2 * sqrt(Pi) * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620. MATHEMATICA nmax = 25; CoefficientList[Series[1/Product[(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4] + 1}], {x, 0, nmax}], x] * Range[0, nmax]! CROSSREFS Cf. A007841, A294506, A309319, A326755, A326756, A326780. Sequence in context: A013416 A156433 A169771 * A293140 A008551 A183896 Adjacent sequences:  A326776 A326777 A326778 * A326780 A326781 A326782 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jul 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 22:03 EDT 2021. Contains 342933 sequences. (Running on oeis4.)