

A326749


BIInumbers of connected setsystems.


30



0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A binary index of n is any position of a 1 in its reversed binary expansion. We define the setsystem with BIInumber n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BIInumber. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BIInumber of {{2},{1,3}} is 18. Elements of a setsystem are sometimes called edges.


LINKS

Table of n, a(n) for n=1..67.


EXAMPLE

The sequence of all connected setsystems together with their BIInumbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
20: {{1,2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
23: {{1},{2},{1,2},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
28: {{1,2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}


MATHEMATICA

bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Select[Range[0, 100], Length[csm[bpe/@bpe[#]]]<=1&]


CROSSREFS

Positions of 0's and 1's in A326753.
Cf. A000120, A001187, A029931, A048143, A048793, A070939, A072639, A323818, A326031, A326702.
Other BIInumbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).
Sequence in context: A303393 A039085 A302433 * A327111 A326853 A326879
Adjacent sequences: A326746 A326747 A326748 * A326750 A326751 A326752


KEYWORD

nonn


AUTHOR

Gus Wiseman, Jul 23 2019


STATUS

approved



