Relations $\beta=\mathbf{f}(\tau)$ in OEIS
 for squares $\mathbf{A} 000290$

Relations $\boldsymbol{\beta}=\mathbf{f}(\boldsymbol{\tau})$	Sequences of Integers in OEIS	Squares of Primes A001248 $\tau\left(\mathrm{p}^{2}\right)=3$	Squares of Composites A062312 $\backslash\{1\}$ $\tau(\mathrm{m})>=5$	1^{2}
$\beta(\mathrm{~m})=(\tau(\mathrm{m})-3) / 2$	A 326707	$\beta\left(\mathrm{p}^{2}\right)=0: \mathrm{A} 326708$	$\beta "(\mathrm{~m})=0: \mathrm{A} 326709$	X
$\beta(\mathrm{m})=(\tau(\mathrm{m})-1) / 2$	A 326710	$\beta\left(\mathrm{p}^{2}\right)=1: \quad\{121\}$	$\beta "(\mathrm{~m})=1: \mathrm{A} 326711$	$\{1\}$

The sequences in OEIS about relations $\beta=\mathrm{f}(\tau)$ for squares are detailed in this array.

Definitions:

$\tau(\mathrm{n})$ is the number of divisors of the integer n : A000005.
$\beta(n)=\beta^{\prime}(n)+\beta^{\prime \prime}(n)$ is the number of Brazilian representations of n : A220136.
$\beta^{\prime}(\mathrm{n})$ is the number of representations of n of the form aa_{b}, but not 11_{b}.
$\beta^{\prime \prime}(\mathrm{n})$ is the number of representations of n with at least three digits. These integers with such a representation are in the sequence A167782.

When $m>1$ is square, $\beta^{\prime}(m)=(\tau(m)-3) / 2$, so always $\beta(m)>=(\tau(m)-3) / 2$.

