login
Column 3 of the array at A326661 see Comments.
2

%I #15 Feb 06 2023 10:01:43

%S 7,16,25,35,43,52,61,71,79,88,97,107,115,124,133,142,151,160,169,179,

%T 187,196,205,215,223,232,241,251,259,268,277,286,295,304,313,323,331,

%U 340,349,359,367,376,385,395,403,412,421,430,439,448,457,467,475,484

%N Column 3 of the array at A326661 see Comments.

%C This is the sequence (c(n)) defined by the complementary equation c(n) = a(n) + b(3n), with initial value a(1) = 1. See A326661. Conjecture: 9n-c(n) is in {1,2} for all n.

%H Clark Kimberling, <a href="/A326664/b326664.txt">Table of n, a(n) for n = 1..10000</a>

%t mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);

%t a = b = c = {}; h = 1; k = 3;

%t Do[Do[AppendTo[a,

%t mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]];

%t AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}];

%t AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}]; c

%t (* _Peter J. C. Moses_, Jul 04 2019 *)

%Y Cf. A326661.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Jul 16 2019