login
A326637
Sum of the largest parts of the partitions of n into 10 squarefree parts.
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 13, 19, 34, 40, 60, 82, 126, 153, 219, 275, 385, 464, 621, 738, 996, 1168, 1514, 1780, 2287, 2643, 3302, 3839, 4743, 5456, 6638, 7605, 9225, 10479, 12512, 14199, 16929, 19061, 22453, 25300, 29690, 33283, 38715, 43333
OFFSET
0,12
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * (n-i-j-k-l-m-o-p-q-r), where mu is the Möbius function (A008683).
a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326635(n) - A326636(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p-q-r) * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 14 2019
STATUS
approved