login
A326615
a(n) is the smallest prime p such that Sum_{primes q <= p} Kronecker(n,q) > 0, or 0 if no such prime exists.
1
2, 11100143, 61981, 3, 2082927221, 5, 2, 11100143, 2, 3, 577, 61463, 2083, 11, 2, 3, 2, 11100121, 5, 2082927199, 1217, 3, 2, 5, 2, 17, 61981, 3, 719, 7, 2, 11100143, 2, 3, 23, 5, 11, 31, 2, 3, 2, 13, 17, 7, 2082927199, 3, 2, 61463, 2, 11100121, 7, 3, 17, 5, 2, 11, 2, 3, 31, 7, 5, 41, 2, 3
OFFSET
1,1
LINKS
FORMULA
a(A003658(n)) = A306499(n).
a(n) = 2 iff n == 1 or 7 mod 8 (see A047522).
a(n) = 3 iff n == 4 mod 6 (see A016957).
PROG
(PARI) a(n) = my(i=0); forprime(p=2, oo, i+=kronecker(n, p); if(i>0, return(p))) \\ after Jianing Song in A306499
CROSSREFS
Sequence in context: A324440 A121390 A170997 * A259407 A157992 A322145
KEYWORD
nonn
AUTHOR
Richard N. Smith, Jul 15 2019
STATUS
approved