login
A326600
E.g.f.: A(x,y) = exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!, where A(x,y) = Sum_{n>=0} x^n/n! * Sum_{k=0..n} T(n,k)*y^k, as a triangle of coefficients T(n,k) read by rows.
10
1, 2, 1, 15, 12, 2, 203, 206, 60, 5, 4140, 4949, 1947, 298, 15, 115975, 156972, 75595, 16160, 1535, 52, 4213597, 6301550, 3528368, 945360, 127915, 8307, 203, 190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877, 10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140, 682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147, 51724158235372, 101557600812015, 82635818516305, 36672690416280, 9831937482310, 1665456655065, 180791918475, 12443391060, 520878315, 12004575, 115975
OFFSET
0,2
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..495 (first 30 rows of this triangle).
FORMULA
E.g.f.: exp(-1-y) * Sum_{n>=0} (exp(n*x) + y)^n / n!.
E.g.f.: exp(-1-y) * Sum_{n>=0} exp(n^2*x) * exp( y*exp(n*x) ) / n!.
FORMULAS FOR TERMS.
T(n,n) = A000110(n) for n >= 0, where A000110 is the Bell numbers.
T(n,0) = A000110(2*n) for n >= 0, where A000110 is the Bell numbers.
Sum_{k=0..n} T(n,k) * (-1)^k = A108459(n) for n >= 0.
Sum_{k=0..n} T(n,k) = A326433(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 2^k = A326434(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 3^k = A326435(n) for n >= 0.
Sum_{k=0..n} T(n,k) * 4^k = A326436(n) for n >= 0.
EXAMPLE
E.g.f.: A(x,y) = 1 + (2 + y)*x + (15 + 12*y + 2*y^2)*x^2/2! + (203 + 206*y + 60*y^2 + 5*y^3)*x^3/3! + (4140 + 4949*y + 1947*y^2 + 298*y^3 + 15*y^4)*x^4/4! + (115975 + 156972*y + 75595*y^2 + 16160*y^3 + 1535*y^4 + 52*y^5)*x^5/5! + (4213597 + 6301550*y + 3528368*y^2 + 945360*y^3 + 127915*y^4 + 8307*y^5 + 203*y^6)*x^6/6! + (190899322 + 310279615*y + 195764198*y^2 + 62079052*y^3 + 10690645*y^4 + 1001567*y^5 + 47397*y^6 + 877*y^7)*x^7/7! + (10480142147 + 18293310174*y + 12735957930*y^2 + 4614975428*y^3 + 952279230*y^4 + 114741060*y^5 + 7901236*y^6 + 285096*y^7 + 4140*y^8)*x^8/8! + (682076806159 + 1267153412532*y + 959061013824*y^2 + 387848415927*y^3 + 92381300277*y^4 + 13455280629*y^5 + 1200540180*y^6 + 63424134*y^7 + 1805067*y^8 + 21147*y^9)*x^9/9! + (51724158235372 + 101557600812015*y + 82635818516305*y^2 + 36672690416280*y^3 + 9831937482310*y^4 + 1665456655065*y^5 + 180791918475*y^6 + 12443391060*y^7 + 520878315*y^8 + 12004575*y^9 + 115975*y^10)*x^10/10! + ...
such that
A(x,y) = exp(-1-y) * (1 + (exp(x) + y) + (exp(2*x) + y)^2/2! + (exp(3*x) + y)^3/3! + (exp(4*x) + y)^4/4! + (exp(5*x) + y)^5/5! + (exp(6*x) + y)^6/6! + ...)
also
A(x,y) = exp(-1-y) * (exp(y) + exp(x)*exp(y*exp(x)) + exp(4*x)*exp(y*exp(2*x))/2! + exp(9*x)*exp(y*exp(3*x))/3! + exp(16*x)*exp(y*exp(4*x))/4! + exp(25*x)*exp(y*exp(5*x))/5! + exp(36*x)*exp(y*exp(6*x))/6! + ...).
This triangle of coefficients T(n,k) of x^n*y^k/n! in e.g.f. A(x,y) begins:
[1],
[2, 1],
[15, 12, 2],
[203, 206, 60, 5],
[4140, 4949, 1947, 298, 15],
[115975, 156972, 75595, 16160, 1535, 52],
[4213597, 6301550, 3528368, 945360, 127915, 8307, 203],
[190899322, 310279615, 195764198, 62079052, 10690645, 1001567, 47397, 877],
[10480142147, 18293310174, 12735957930, 4614975428, 952279230, 114741060, 7901236, 285096, 4140],
[682076806159, 1267153412532, 959061013824, 387848415927, 92381300277, 13455280629, 1200540180, 63424134, 1805067, 21147], ...
Main diagonal is A000110 (Bell numbers).
Leftmost column is A020557(n) = A000110(2*n), for n >= 0.
Row sums form A326433.
CROSSREFS
Cf. A326601 (central terms).
Sequence in context: A181869 A141510 A219899 * A272304 A266521 A039652
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 20 2019
STATUS
approved