login
A326597
Sum of the second largest parts of the partitions of n into 10 parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 27, 39, 63, 91, 137, 190, 277, 376, 525, 704, 956, 1255, 1671, 2160, 2818, 3599, 4616, 5819, 7369, 9187, 11480, 14179, 17527, 21441, 26256, 31851, 38649, 46543, 56022, 66980, 80050, 95083, 112860, 133266
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} i.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[;; , 2]]], {n, 0, 50}] (* _Harvey P. Dale_, Nov 19 2023 *)
KEYWORD
nonn
AUTHOR
_Wesley Ivan Hurt_, Jul 13 2019
STATUS
approved