login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.
8

%I #11 Aug 14 2019 17:46:48

%S 1,0,1,1,4,13,91,1318,73581,51913025

%N Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.

%C An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

%e The a(2) = 1 through a(5) = 13 antichains:

%e {{1,2}} {{1,2,3}} {{1,2,3,4}} {{1,2,3,4,5}}

%e {{1,4},{2,3}} {{1,2,5},{1,3,4}}

%e {{2,4},{1,2,3}} {{1,3,5},{2,3,4}}

%e {{3,4},{1,2,4}} {{1,4,5},{2,3,5}}

%e {{1,4,5},{1,2,3,4}}

%e {{2,3,5},{1,2,3,4}}

%e {{2,4,5},{1,2,3,5}}

%e {{3,4,5},{1,2,4,5}}

%e {{1,5},{2,4},{1,2,3}}

%e {{2,5},{3,4},{1,2,4}}

%e {{3,5},{1,2,5},{1,3,4}}

%e {{4,5},{1,3,5},{2,3,4}}

%e {{1,4,5},{2,3,5},{1,2,3,4}}

%t stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];

%t cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];

%t Table[Length[cleq[n]],{n,0,5}]

%Y Cf. A000372, A006126, A035470, A307249, A321455, A321717, A321718, A326360, A326518, A326534, A326566.

%K nonn,more

%O 0,5

%A _Gus Wiseman_, Jul 13 2019

%E a(9) from _Andrew Howroyd_, Aug 14 2019