login
A326511
Number of (binary) max-heaps on n elements from the set {0,1} containing exactly ten 0's.
2
1, 1, 2, 5, 13, 26, 47, 86, 151, 277, 460, 783, 1248, 2136, 3091, 4872, 7166, 11610, 15720, 23832, 32847, 50788, 64714, 94916, 124296, 185246, 226976, 324586, 407824, 589416, 699010, 977912, 1188567, 1674431, 1938526, 2661055, 3147865, 4338414, 4923481
OFFSET
10,3
LINKS
Eric Weisstein's World of Mathematics, Heap
Wikipedia, Binary heap
Index entries for linear recurrences with constant coefficients, signature (1, 2, -2, 3, -3, -8, 8, 2, -2, 4, -4, -14, 14, 24, -24, 5, -5, -34, 34, 25, -25, -16, 16, -20, 20, 56, -56, -20, 20, -16, 16, 25, -25, -34, 34, 5, -5, 24, -24, -14, 14, 4, -4, 2, -2, -8, 8, 3, -3, 2, -2, -1, 1).
MAPLE
b:= proc(n) option remember; series(`if`(n=0, 1, (g-> (f->
x^n+b(f)*b(n-1-f))(min(g-1, n-g/2)))(2^ilog2(n))), x, 11)
end:
a:= n-> coeff(b(n), x, 10):
seq(a(n), n=10..50);
CROSSREFS
Column k=10 of A309049.
Sequence in context: A289529 A087250 A065301 * A289463 A289579 A367174
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 09 2019
STATUS
approved