OFFSET
0,2
COMMENTS
T(m, n, k) = 2^n * n! * [x^k] [z^n] (2^m*exp(x*z))/(exp(z) + 1)^m are the coefficients of the generalized Euler polynomials (or Euler polynomials of higher order).
LINKS
NIST Digital Library of Mathematical Functions, §24.16(i), Higher-Order Analogs (of Bernoulli and Euler Polynomials), Release 1.0.23 of 2019-06-15.
EXAMPLE
Triangle starts:
[0] [ 1]
[1] [ -2, 2]
[2] [ 2, -8, 4]
[3] [ 4, 12, -24, 8]
[4] [ -16, 32, 48, -64, 16]
[5] [ -32, -160, 160, 160, -160, 32]
[6] [ 272, -384, -960, 640, 480, -384, 64]
[7] [ 544, 3808, -2688, -4480, 2240, 1344, -896, 128]
[8] [ -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256]
[9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504, 9216, -4608, 512]
MAPLE
E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;
series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);
MATHEMATICA
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2019 *)
CROSSREFS
Let E2_{n}(x) = Sum_{k=0..n} T(n,k) x^k. Then E2_{n}(1) = A155585(n+1),
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 11 2019
STATUS
approved