login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326432
E.g.f.: exp(-3) * Sum_{n>=0} ((1+x)^n + 2)^n / n!.
1
1, 4, 43, 762, 19573, 672374, 29390733, 1578973510, 101612589283, 7679375658354, 670906936259299, 66891320576455142, 7530075312966689409, 948460025747139087802, 132635012110499511683869, 20454728573277460691412006, 3458323793329321035116835859, 637694404371402843143395980434, 127650318560095585201739965521651
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) exp(-r*(p+1)) * Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) exp(-r*(p+1)) * Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n / n!,
here, q = 1+x, p = 2, r = 1.
FORMULA
E.g.f.: exp(-3) * Sum_{n>=0} ((1+x)^n + 2)^n / n!.
E.g.f.: exp(-3) * Sum_{n>=0} (1+x)^(n^2) * exp( 2*(1+x)^n ) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 43*x^2/2! + 762*x^3/3! + 19573*x^4/4! + 672374*x^5/5! + 29390733*x^6/6! + 1578973510*x^7/7! + 101612589283*x^8/8! + 7679375658354*x^9/9! + 670906936259299*x^10/10! + ...
such that
A(x) = exp(-3) * (1 + ((1+x) + 2) + ((1+x)^2 + 2)^2/2! + ((1+x)^3 + 2)^3/3! + ((1+x)^4 + 2)^4/4! + ((1+x)^5 + 2)^5/5! + ((1+x)^6 + 2)^6/6! + ...)
also,
A(x) = exp(-3) * (exp(2) + (1+x)*exp(2*(1+x)) + (1+x)^4*exp(2*(1+x)^2)/2! + (1+x)^9*exp(2*(1+x)^3)/3! + (1+x)^16*exp(2*(1+x)^4)/4! + (1+x)^25*exp(2*(1+x)^5)/5! + (1+x)^36*exp(2*(1+x)^6)/6! + ...).
PROG
(PARI) /* Requires appropriate precision */
\p200
{a(n) = my(A = exp(-3) * sum(m=0, n+300, ((1+x)^m + 2 +x*O(x^n))^m / m! )); round(n!*polcoeff(A, n))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A326431.
Sequence in context: A027311 A198205 A277639 * A074702 A197717 A277456
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 09 2019
STATUS
approved