$$
\text { Relation } \beta=\mathrm{f}(\tau) \quad \text { (Abstract) }
$$

The number of divisors of number n is called $\tau(\mathrm{n})$.
The number of ways for a number n to be Brazilian is called $\beta(n)$ with $\beta(n)=\beta^{\prime}(n)+\beta^{\prime \prime}(n)$ where
$->\beta^{\prime}(\mathrm{n})$ is the number of representations type aa_{b}, but not $11 _$b, and
$->\beta$ " (n) is the number of representations with at least three digits.
Example: $\tau(15)=4 ; 15=1111 _2=33 _4 ; \beta(15)=2, \beta^{\prime}(15)=1, \beta^{\prime}(15)=1$.
The different relations $\beta=\mathrm{f}(\tau)$

1. $\tau(\mathrm{n})$ is even $==>\mathrm{n}$ no square: A 000037
$1.1 \tau(\mathrm{n})=2$ ==> n prime: A000040
These integers satisfy $\beta^{\prime}(n)=0$.
$\beta^{\prime \prime}(\mathrm{n})=0, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2-1=0$, non-Brazilian primes : A220627
$\beta^{\prime \prime}(\mathrm{n})=1, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2=1$, Brazilian primes : A085104 \\{31,8191\}}
$\beta^{\prime \prime}(\mathrm{n})=2, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2+1=2$, Brazilian primes : $\{31,8191\}=\mathrm{A} 119598 \backslash\{1\}$
$1.2 \tau(\mathrm{n})>=4$
1.2.1. n non-oblong (and no square): A308874

These integers satisfy $\beta^{\prime}(\mathrm{n})=\tau(\mathrm{n}) / 2-1$.

$$
\begin{array}{ll}
\beta^{\prime \prime}(\mathrm{n})=0, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2-1: & \text { A326386 } \\
\beta^{\prime \prime}(\mathrm{n})=1, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2: & \text { A326387 } \\
\beta^{\prime \prime}(\mathrm{n})=2, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2+1: & \text { A326388 } \\
\beta^{\prime \prime}(\mathrm{n})=3, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2+2: & \text { A326389 } \\
\beta^{\prime \prime}(\mathrm{n})=4, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2+3: & \text { To create } \\
\beta^{\prime \prime}(\mathrm{n})=\mathrm{k}>=5, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2+\mathrm{k}-1>=\tau(\mathrm{n}) / 2+4 & \text { To create }
\end{array}
$$

1.2.2. n oblong A002378

These integers satisfy $\beta^{\prime}(\mathrm{n})=\tau(\mathrm{n}) / 2-2$.

$$
\begin{array}{ll}
\beta^{\prime \prime}(\mathrm{n})=0, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2-2: & \text { A326378 } \\
\beta^{\prime \prime}(\mathrm{n})=1, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2-1: & \text { A326384 } \\
\beta^{\prime \prime}(\mathrm{n})=2, \beta(\mathrm{n})=\tau(\mathrm{n}) / 2: & \text { A326385 } \\
\beta^{\prime \prime}(\mathrm{n})=\mathrm{k}>=3, \beta(\mathrm{n})>=\tau(\mathrm{n}) / 2+1: & \text { A309062 }
\end{array}
$$

2. $\tau(\mathrm{n})$ is odd $==>\mathrm{n}$ is square A 000290
2.1. $\tau(\mathrm{n})=1==>\mathrm{n}=1$
$\beta(1)=(\tau(1)-1) / 2=0$
2.2. $\tau(n)=3==>n$ is square of primes $A 062312 \backslash\{1\}$ with $\beta^{\prime}(n)=0$ These integers satisfy $\beta^{\prime}(n)=0$.

$$
\begin{array}{ll}
\beta^{\prime \prime}(\mathrm{n})=0, \beta(\mathrm{n})=(\tau(\mathrm{n})-3) / 2=0: & \mathrm{A} 062312 \backslash\{1,121\}=\text { To create } \\
\beta^{\prime \prime}(\mathrm{n})=1, \beta(\mathrm{n})=(\tau(\mathrm{n})-1) / 2=1: & \{121\}
\end{array}
$$

2.3. $\tau(n)=5==>n$ is square of composites

These integers satisfy $\beta^{\prime}(\mathrm{n})=(\tau(\mathrm{n})-3) / 2$.

$$
\begin{aligned}
& \beta^{\prime \prime}(\mathrm{n})=0, \beta(\mathrm{n})=(\tau(\mathrm{n})-3) / 2: \quad \text { To create } \\
& \beta^{\prime \prime}(\mathrm{n})=1, \beta(\mathrm{n})=(\tau(\mathrm{n})-1) / 2: \quad \text { To create } \\
& \beta^{\prime \prime}(\mathrm{n})=\mathrm{k}>=2, \beta(\mathrm{n}) \text { not found such terms }
\end{aligned}
$$

Conclusion:

The four families that appear through this study: primes (1.1), composites nor oblong neither square (1.2.1), oblong numbers (1.2.2) and squares (2) realize a partition of the set $\mathrm{N}^{*}=\mathrm{N} \backslash\{0\}$.

For an integer n ,

- the number of Brazilian representations with 2 digits $\beta^{\prime}(\mathrm{n})$ depends only on $\tau(\mathrm{n})$, but,
- the number of Brazilian representations with 3 digits or more β "(n) depends only of this number n itself when $n=a *\left(b^{\wedge} n-1\right) /(b-1)$ with $1<=a<b<n-1$, $b>=2$ and $n>=3$, These integers with such a representation are in the sequence A167782.

These results come from detailed study of several sequences in OEIS.

