login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326369 Number of tilings of an equilateral triangle of side length n with unit triangles (of side length 1) and exactly four unit "lozenges" or "diamonds" (also of side length 1). 7
0, 0, 0, 762, 12699, 90270, 417435, 1478160, 4354497, 11203269, 25970895, 55414395, 110505120, 208300257, 374375664, 645922095, 1075615380, 1736379630, 2727171042, 4179918384, 6267764745, 9214763640, 13307191065, 18906643602, 26465101179, 36542141595, 49824502425 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Richard J. Mathar, Lozenge tilings of the equilateral triangle, arXiv:1909.06336 [math.CO], 2019.

Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).

FORMULA

a(n) = (3/128)*(n-3)*(n-2)*(9*n^6 + 9*n^5 - 135*n^4 - 81*n^3 + 670*n^2 + 104*n - 1216) for n >= 2 (proved by Greg Dresden and Eldin Sijaric).

From Colin Barker, Jul 01 2019: (Start)

G.f.: 3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9.

a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.

a(n) = (3/128)*(-7296 + 6704*n + 2284*n^2 - 3732*n^3 + 265*n^4 + 648*n^5 - 126*n^6 - 36*n^7 + 9*n^8) for n>1.

(End)

EXAMPLE

We can represent a unit triangle this way:

       o

      / \

     o - o

and a unit "lozenge" or "diamond" has these three orientations:

     o

    / \          o - o            o - o

   o   o  and   /   /   and also   \   \

    \ /        o - o                o - o

     o

and for n=4, here is one of the 762 different tiling of the triangle of side length 4 with exactly four lozenges:

            o

           / \

          o - o

         / \ / \

        o - o   o

       /   / \ / \

      o - o - o - o

     /   / \ / \   \

    o - o - o - o - o

MATHEMATICA

Rest@ CoefficientList[Series[3 x^4*(254 + 1947 x + 1137 x^2 - 613 x^3 + 87 x^4 + 33 x^5 - 10 x^6)/(1 - x)^9, {x, 0, 27}], x] (* Michael De Vlieger, Jul 07 2019 *)

PROG

(PARI) concat([0, 0, 0], Vec(3*x^4*(254 + 1947*x + 1137*x^2 - 613*x^3 + 87*x^4 + 33*x^5 - 10*x^6) / (1 - x)^9 + O(x^40))) \\ Colin Barker, Jul 01 2019

CROSSREFS

Cf. A326367, A326368. Column 4 of A273464.

Sequence in context: A253615 A253616 A253611 * A210081 A083645 A145718

Adjacent sequences:  A326366 A326367 A326368 * A326370 A326371 A326372

KEYWORD

nonn,easy

AUTHOR

Greg Dresden, Jul 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 17:41 EST 2019. Contains 329847 sequences. (Running on oeis4.)