The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326323 A(n, k) = A_{n}(k) where A_{n}(x) are the Eulerian polynomials, square array read by ascending antidiagonals, for n >= 0 and k >= 0. 3
 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 13, 24, 1, 1, 1, 5, 22, 75, 120, 1, 1, 1, 6, 33, 160, 541, 720, 1, 1, 1, 7, 46, 285, 1456, 4683, 5040, 1, 1, 1, 8, 61, 456, 3081, 15904, 47293, 40320, 1, 1, 1, 9, 78, 679, 5656, 40005, 202672, 545835, 362880, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 LINKS OEIS Wiki, Eulerian polynomials. FORMULA A(n, k) = Sum_{j=0..k} a(k, j)*n^j where a(k, j) are the Eulerian numbers. E.g.f.: (n - 1)/(n - exp((n-1)*x)) for n = 0 and n >= 2, 1/(1 - x) if n = 1. A(n, 0) = 1; A(n, 1) = n!. A(n, k) = (k - 1)^(n + 1)/k HurwitzLerchPhi(1/k, -n, 0) for k >= 2. A(n, k) = Sum_{j=0..n} j! * Stirling2(n, j) * (k - 1)^(n - j) for k >= 2. EXAMPLE Array starts: [0] 1, 1, 1,  1,    1,     1,      1,        1,         1,          1, [A000012] [1] 1, 1, 2,  6,   24,   120,    720,     5040,     40320,     362880, [A000142] [2] 1, 1, 3, 13,   75,   541,   4683,    47293,    545835,    7087261, [A000670] [3] 1, 1, 4, 22,  160,  1456,  15904,   202672,   2951680,   48361216, [A122704] [4] 1, 1, 5, 33,  285,  3081,  40005,   606033,  10491885,  204343641, [A255927] [5] 1, 1, 6, 46,  456,  5656,  84336,  1467376,  29175936,  652606336, [A326324] [6] 1, 1, 7, 61,  679,  9445, 158095,  3088765,  68958295, 1731875605, [7] 1, 1, 8, 78,  960, 14736, 272448,  5881968, 145105920, 4026744576, [8] 1, 1, 9, 97, 1305, 21841, 440649, 10386817, 279768825, 8476067761, Seen as a triangle: [0], 1 [1], 1, 1 [2], 1, 1, 1 [3], 1, 1, 2,  1 [4], 1, 1, 3,  6,   1 [5], 1, 1, 4, 13,  24,    1 [6], 1, 1, 5, 22,  75,  120,     1 [7], 1, 1, 6, 33, 160,  541,   720,     1 [8], 1, 1, 7, 46, 285, 1456,  4683,  5040,     1 [9], 1, 1, 8, 61, 456, 3081, 15904, 47293, 40320, 1 MAPLE A := (n, k) -> add(combinat:-eulerian1(k, j)*n^j, j=0..k): seq(seq(A(n-k, k), k=0..n), n=0..10); # Alternative: egf := n -> `if`(n=1, 1/(1-x), (n-1)/(n  - exp((n-1)*x))): ser := n -> series(egf(n), x, 21): for n from 0 to 6 do seq(k!*coeff(ser(n), x, k), k=0..9) od; MATHEMATICA a[n_, 0] := 1; a[n_, 1] := n!; a[n_, k_] := (k - 1)^(n + 1)/k HurwitzLerchPhi[1/k, -n, 0]; (* Alternative: *) a[n_, k_] := Sum[StirlingS2[n, j] (k - 1)^(n - j) j!, {j, 0, n}]; Table[Print[Table[a[n, k], {n, 0, 10}]], {k, 0, 8}] CROSSREFS Cf. A173018, A000012, A000142, A000670, A122704, A255927, A326324. Sequence in context: A227061 A201949 A291709 * A257493 A296526 A259844 Adjacent sequences:  A326320 A326321 A326322 * A326324 A326325 A326326 KEYWORD nonn,tabl AUTHOR Peter Luschny, Jun 27 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 06:13 EST 2020. Contains 332199 sequences. (Running on oeis4.)