login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326305 Dirichlet g.f.: zeta(s-1) * (1 - 2^(-s)) / zeta(s). 1
1, 0, 2, 1, 4, 0, 6, 2, 6, 0, 10, 2, 12, 0, 8, 4, 16, 0, 18, 4, 12, 0, 22, 4, 20, 0, 18, 6, 28, 0, 30, 8, 20, 0, 24, 6, 36, 0, 24, 8, 40, 0, 42, 10, 24, 0, 46, 8, 42, 0, 32, 12, 52, 0, 40, 12, 36, 0, 58, 8, 60, 0, 36, 16, 48, 0, 66, 16, 44, 0, 70, 12, 72, 0, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Moebius transform of A026741.

Dirichlet convolution of A002131 with Dirichlet inverse of A000005.

Dirichlet convolution of A000027 with Dirichlet inverse of A001511.

LINKS

Table of n, a(n) for n=1..75.

FORMULA

a(n) = phi(n) if n odd, phi(n) - phi(n/2) if n even, where phi = A000010.

a(n) = Sum_{d|n} mu(n/d) * A026741(d).

a(n) = Sum_{d|n} A007427(n/d) * A002131(d).

a(n) = Sum_{d|n} A092673(n/d) * d.

a(p) = p - 1, where p is odd prime.

Product_{n>=1} 1 / (1 - x^n)^a(n) = g.f. for A299069.

Sum_{k=1..n} a(k) ~ 9*n^2 / (4*Pi^2). - Vaclav Kotesovec, Oct 26 2019

MATHEMATICA

Table[Sum[MoebiusMu[n/d] Numerator[d/2], {d, Divisors[n]}], {n, 1, 75}]

a[n_] := If[OddQ[n], EulerPhi[n], EulerPhi[n] - EulerPhi[n/2]]; Table[a[n], {n, 1, 75}]

PROG

(MAGMA) [IsOdd(n) select EulerPhi(n) else EulerPhi(n)-EulerPhi(n div 2) : n in [1..80]]; // Marius A. Burtea, Oct 17 2019

CROSSREFS

Cf. A000005, A000010, A000027, A001511, A002131, A007427, A008683, A016825 (positions of 0's), A026741, A092673, A299069.

Sequence in context: A106316 A300721 A126707 * A057458 A291193 A291200

Adjacent sequences:  A326302 A326303 A326304 * A326306 A326307 A326308

KEYWORD

nonn,mult

AUTHOR

Ilya Gutkovskiy, Oct 17 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 27 17:25 EDT 2020. Contains 338035 sequences. (Running on oeis4.)