login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326269 G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n. 1
1, 1, 3, 3, 7, 10, 17, 27, 41, 70, 109, 168, 276, 439, 688, 1099, 1774, 2820, 4488, 7219, 11596, 18574, 29844, 48040, 77302, 124515, 200756, 323695, 522168, 843020, 1361409, 2198679, 3552094, 5740668, 9279009, 14999925, 24252057, 39216310, 63419775, 102569373, 165898349, 268344639, 434076911, 702197193, 1135967897, 1837747824, 2973155053, 4810149922, 7782281092, 12591037633, 20371441356 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

More generally, the following sums are equal:

(1) Sum_{n>=0} binomial(n+k-1, n) * (p + q^n)^n * r^n,

(2) Sum_{n>=0} binomial(n+k-1, n) * q^(n^2) * r^n / (1 - p*q^n*r)^(n+k),

for any fixed integer k; this sequence results when k=1, p = 1+x, q = x, r = x.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n.

G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1) - x^(n+2))^(n+1).

a(n) ~ (5 + sqrt(5))/10 * Phi^n, where Phi = (1 + sqrt(5))/2.

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 27*x^7 + 41*x^8 + 70*x^9 + 109*x^10 + 168*x^11 + 276*x^12 + 439*x^13 + 688*x^14 + 1099*x^15 + ...

such that

A(x) = 1 + (1+2*x)*x + (1+x+x^2)^2*x^2 + (1+x+x^3)^3*x^3 + (1+x+x^4)^4*x^4 + (1+x+x^5)^5*x^5 + (1+x+x^6)^6*x^6 + (1+x+x^7)^7*x^7 + (1+x+x^8)^8*x^8 + ...

also

A(x) = 1/(1-x-x^2) + x^2/(1-x^2-x^3)^2 + x^6/(1-x^3-x^4)^3 + x^12/(1-x^4-x^5)^4 + x^20/(1-x^5-x^6)^5 + x^30/(1-x^6-x^7)^6 + x^42/(1-x^7-x^8)^7 + ...

PROG

(PARI) {a(n) = my(A = sum(m=0, n, (1+x + x^m +x*O(x^n))^m * x^m ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

(PARI) {a(n) = my(A = sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1 - x^(m+1) - x^(m+2) +x*O(x^n) )^(m+1) ) ); polcoeff(A, n)}

for(n=0, 50, print1(a(n), ", "))

CROSSREFS

Sequence in context: A157933 A013915 A136445 * A052989 A252750 A287274

Adjacent sequences:  A326266 A326267 A326268 * A326270 A326271 A326272

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)