This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326269 G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n. 1
 1, 1, 3, 3, 7, 10, 17, 27, 41, 70, 109, 168, 276, 439, 688, 1099, 1774, 2820, 4488, 7219, 11596, 18574, 29844, 48040, 77302, 124515, 200756, 323695, 522168, 843020, 1361409, 2198679, 3552094, 5740668, 9279009, 14999925, 24252057, 39216310, 63419775, 102569373, 165898349, 268344639, 434076911, 702197193, 1135967897, 1837747824, 2973155053, 4810149922, 7782281092, 12591037633, 20371441356 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} binomial(n+k-1, n) * (p + q^n)^n * r^n, (2) Sum_{n>=0} binomial(n+k-1, n) * q^(n^2) * r^n / (1 - p*q^n*r)^(n+k), for any fixed integer k; this sequence results when k=1, p = 1+x, q = x, r = x. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..1000 FORMULA G.f.: Sum_{n>=0} (1+x + x^n)^n * x^n. G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1) - x^(n+2))^(n+1). a(n) ~ (5 + sqrt(5))/10 * Phi^n, where Phi = (1 + sqrt(5))/2. EXAMPLE G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 27*x^7 + 41*x^8 + 70*x^9 + 109*x^10 + 168*x^11 + 276*x^12 + 439*x^13 + 688*x^14 + 1099*x^15 + ... such that A(x) = 1 + (1+2*x)*x + (1+x+x^2)^2*x^2 + (1+x+x^3)^3*x^3 + (1+x+x^4)^4*x^4 + (1+x+x^5)^5*x^5 + (1+x+x^6)^6*x^6 + (1+x+x^7)^7*x^7 + (1+x+x^8)^8*x^8 + ... also A(x) = 1/(1-x-x^2) + x^2/(1-x^2-x^3)^2 + x^6/(1-x^3-x^4)^3 + x^12/(1-x^4-x^5)^4 + x^20/(1-x^5-x^6)^5 + x^30/(1-x^6-x^7)^6 + x^42/(1-x^7-x^8)^7 + ... PROG (PARI) {a(n) = my(A = sum(m=0, n, (1+x + x^m +x*O(x^n))^m * x^m ) ); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) (PARI) {a(n) = my(A = sum(m=0, sqrtint(n+1), x^(m*(m+1)) / (1 - x^(m+1) - x^(m+2) +x*O(x^n) )^(m+1) ) ); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) CROSSREFS Sequence in context: A157933 A013915 A136445 * A052989 A252750 A287274 Adjacent sequences:  A326266 A326267 A326268 * A326270 A326271 A326272 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)