login
A326261
E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n!.
5
1, 4, 18, 115, 1076, 13749, 223342, 4437115, 105308472, 2930229721, 94110395546, 3444510650343, 142161931150564, 6557368148307253, 335460464343013494, 18907437932151629899, 1167279375125285092592, 78529603970775837111729, 5730854443905658384812466, 451803953552256670477653679, 38337003901469883140928003036, 3489532046271886600931347767373
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (p + q^n)^n * r^n/n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = exp(x) with p = 3, r = x.
LINKS
FORMULA
E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n!.
E.g.f.: Sum_{n>=0} exp(n^2*x) * exp( 3*exp(n*x)*x ) * x^n/n!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 18*x^2/2! + 115*x^3/3! + 1076*x^4/4! + 13749*x^5/5! + 223342*x^6/6! + 4437115*x^7/7! + 105308472*x^8/8! + 2930229721*x^9/9! + 94110395546*x^10/10! + ...
such that
A(x) = 1 + (3 + exp(x))*x + (3 + exp(2*x))^2*x^2/2! + (3 + exp(3*x))^3*x^3/3! + (3 + exp(4*x))^4*x^4/4! + (3 + exp(5*x))^5*x^5/5! + (3 + exp(6*x))^6*x^6/6! + ...
also
A(x) = exp(3*x) + exp(x + 3*exp(x)*x)*x + exp(4*x + 3*exp(2*x)*x)*x^2/2! + exp(9*x + 3*exp(3*x)*x)*x^3/3! + exp(16*x + 3*exp(4*x)*x)*x^4/4! + exp(25*x + 3*exp(5*x)*x)*x^5/5! + exp(36*x + 3*exp(6*x)*x)*x^6/6! + ...
PROG
(PARI) /* E.g.f.: Sum_{n>=0} (3 + exp(n*x))^n * x^n/n! */
{a(n) = my(A = sum(m=0, n, (3 + exp(m*x +x*O(x^n)))^m * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* E.g.f.: Sum_{n>=0} exp( n^2*x + 3*exp(n*x)*x ) * x^n/n! */
{a(n) = my(A = sum(m=0, n, exp(m^2*x + 3*exp(m*x +x*O(x^n))*x ) * x^m/m! )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2019
STATUS
approved