login
A326236
Numbers k such that N = k^6 is a twin rank (cf. A002822: 6N +- 1 are twin primes).
8
1, 1820, 2590, 4795, 5565, 8330, 8470, 10640, 10710, 15960, 16730, 19145, 24535, 26460, 34580, 37065, 41510, 42630, 43505, 48230, 59675, 69160, 84910, 90860, 99540, 103320, 112560, 114205, 117600, 127120, 129220, 131670, 143290, 152740, 161105, 164115, 170030, 175105, 181195, 185045
OFFSET
1,2
COMMENTS
Dinculescu notes that when N = m^2 (resp. m^3) > 1 is a twin rank (i.e., in A002822), then m is a multiple of 5 (resp. of 7), cf. A326232 and A326234. Thus, when N = m^6, then m is a multiple of 35. See A326235 for a(n)/35, n > 1.
See A326232 and A326231 for m^2, A326234 and A326233 for m^3.
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..10001 (3667 terms from A. Dinculescu).
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
FORMULA
a(n) = 35*A326235(n-1), n >= 2.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*n^6+(-1)^s)||return), [1..10^5])
CROSSREFS
Cf. A002822, A326235 (a(n)/35, n>1), A326231, A326232 (analog for n^2), A326233, A326234 (analog for n^3), A326230 (least twin rank n^k for given k).
Sequence in context: A255732 A338166 A353807 * A156636 A234660 A238030
KEYWORD
nonn
AUTHOR
STATUS
approved