login
A326232
Numbers k such that N = k^2 is a twin rank (cf. A002822: 6N +- 1 are twin primes).
8
1, 5, 10, 35, 60, 70, 75, 210, 240, 385, 430, 445, 495, 590, 655, 730, 805, 815, 835, 1005, 1040, 1045, 1230, 1390, 1430, 1530, 1670, 1715, 1850, 1890, 1920, 2000, 2020, 2100, 2110, 2245, 2310, 2405, 2415, 2495, 2545, 2685, 2755, 2840, 2935, 2950, 3045, 3255, 3260, 3335, 3420, 3650, 3775, 3805
OFFSET
1,2
COMMENTS
Dinculescu notes that when k^2 > 1 is a twin rank (i.e., in A002822), then k is always a multiple of 5, and if k^3 > 1 is a twin rank, it is divisible by 7. See A326231 for the terms > 1 divided by 5.
See A326234 and A326233 for k^3, A326236 and A326235 for k^6.
LINKS
A. Dinculescu, On the Numbers that Determine the Distribution of Twin Primes, Surveys in Mathematics and its Applications, 13 (2018), 171-181.
PROG
(PARI) select( is(n)=!for(s=1, 2, ispseudoprime(6*n^2+(-1)^s)||return), [1..5000])
CROSSREFS
Cf. A002822, A326231 (a(n)/5, n>1), A326233, A326234 (analog for k^3), A326235, A326236 (analog for k^6), A326230 (least twin rank m^n for given n).
Sequence in context: A121158 A214650 A032772 * A189732 A307607 A174933
KEYWORD
nonn
AUTHOR
STATUS
approved