%I #4 Jun 11 2019 17:48:59
%S 0,1,-1,1,-1,0,1,-1,1,0,-2,-1,1,2,0,-2,-1,-3,-4,-2,0,2,1,-1,-3,-2,0,1,
%T 2,3,4,3,2,0,2,3,2,0,-2,-3,-2,-1,-3,-4,-5,-3,-1,1,3,4,3,2,0,-2,-3,-4,
%U -3,-1,1,2,3,4,3,1,-1,-3,-4,-5,-4,-3,-1,1,2,0,-2
%N Let z be a sequence of distinct Gaussian integers such that z(1) = 0, z(2) = 2+i (where i denotes the imaginary unit), for n > 1, z(n+1) the Gaussian integer with least norm at one knight move from z(n) (in case of a tie, choose the value such that Im(z(n+1)/z(n))>0); a(n) is the imaginary part of z(n).
%C See A326170 for the real part and additional comments.
%H Rémy Sigrist, <a href="/A326171/a326171.gp.txt">PARI program for A326171</a>
%o (PARI) See Links section.
%Y Cf. A326170.
%K sign,fini
%O 1,11
%A _Rémy Sigrist_, Jun 10 2019